- 雷凌双擎上的1.8L,98匹的发动机为什么参数这么难看?是出于哪些方面的考虑?
雷凌双擎上的1.8L,98匹的发动机为什么参数这么难看?是出于哪些方面的考虑?
节油考虑_ECVT双擎系统需要温和驾驶可勉强节油
- 内容概述:米勒循环伪「阿特金森」概念解析,ECVT系统内燃机简配的尴尬。
丰田品牌的「双擎系统」指车辆同时具备内燃机与电动机两台引擎,引擎是engine的音译,国内习惯称之为发动机,港台地区比较习惯用音译使其成为舶来词(类似于日文)。这套系统装备的内燃机普遍理解为阿特金森循环,然而丰田其实是撒了一个弥天大谎,因其内燃机并没有特殊的循环结构,只是为规避米勒专利换个名称而已。(下图为阿机结构特点)
知识点1:丰田汽车使用的内燃机为【米勒循环】。汽车装备的内燃式热机有「进压爆排」四个冲程,因为燃油需要在喷油进气后压缩产生高温使其蒸发,气态混合油气才能有高效率的燃烧状态。普通的性能机多使用奥托循环模式,在压缩冲程中延时关闭进气门,使部分混合油气在压力作用下回到进气歧管,随后燃烧做功实现相同的膨胀比(膨胀做功),参考下图。
知识点2:米勒循环理论上“可以节油”但实际都会费油!原因为压缩冲程排出了部分混合油气,这就等于节省了部分燃油实现了相同的膨胀比;但是也不要忘记什么叫做【内燃机】!——这种机器是依靠燃烧燃油产生热能,再将热能转化为机械能的机器;米勒循环燃烧的燃油变少了,产生的热能(扭矩)显然也会更低,扭矩有多重要呢?
知识点3:扭矩×转速÷常数×倍率=马力。常数倍率不变,转速总会限制在相当的范围内,那么扭矩小自然马力就会很低;车辆的加速性能与极速水平就都会很差,在需要理想加速体验时就只能拉升转速提高输出马力,然而内燃机的转速越高油耗也就会越高。所以燃油动力汽车装备米勒循环发动机会差的一塌糊涂,但混合动力汽车倒是可以使用。
电动机有恒扭矩发力的特点,指起步第一转就能爆发最大扭矩。米勒循环发动机的中低转速扭矩太低,输出的功率也会非常低;不过起步加速时可以利用电机辅助驱动,作用正是弥补这种内燃机羸弱的性能,同时实现内燃机的低油耗运行。所以双擎ECVT理论上确实能够节油,但实际情况也是很不理想,因其电驱系统的水平太差。
我来分享一下,关于这台丰田1.8L混合动力发动机的看法:
一直以来我们传统的判别发动机水平高低的主要指标是看发动机的性能,性能越高,发动机水平越高。不过,随着电气化时代的到来,发动机技术逐渐和各种类型的混动技术相结合,由于电机在性能上的优势,发动机的性能指标逐渐变得不那么重要了,而发动机的效率指标将变得越来越重要,这也是为什么我们近几年看到厂家在宣传发动机的时候都开始强调热效率的原因。
丰田的这台混动专用的1.8L自然吸气发动机就是这种以效率为第一优先的开发理念。我们看到卡罗拉和雷凌的活动车型可以轻松做到4L/100km左右的油耗水平。
丰田这台代号8ZR的1.8L的自然吸气发动机采用了阿特金森循环,和丰田最新的Dynamic Force2.5L/2.0L发动机相比,这台1.8L是丰田上一代的发动机。最大马力98匹,最大扭矩142Nm。单纯看性能的话非常一般。
由于***用了阿特金森循环,这台1.8L发动机的压缩比高达13:1,同时据说能够达到40%的最高热效率,这在目前的业界也是非常高的水平了。
1.什么是阿特金森循环
说到阿特金森循环,很多人用到这张动图。这个图展示了阿特金森循环的基本原理,也就是通过膨胀比>压缩比的燃烧方式来提高效率。不过最初设想是用复杂的曲柄连杆机构来实现,实际上这在实际开发和制造过程中并不现实。
因此,目前我们说到的市场在在用的阿特金森循环都是用另外一种方式实现的,也就是通过凸轮型线设计和气门正时控制来实现。
也就是***用进气门晚关来实现阿特金森循环,基本原理是:
阿特金森循环在压缩冲程的前期推迟进气门关闭时刻,把一部分已经进入汽缸的空气重新推回进气管中,然后待气门关闭后才开始真正的压缩。因此,实际工作时的压缩比没有几何结构计算的压缩比那么高。